
Abstract. An expectation value approach to calculations
of ®rst-order properties using the non-iterative, triple-
excitation amplitudes in the coupled cluster wave func-
tion is exploited. Three methods are suggested and
analysed using the many body perturbation theory
(MBPT) expansion arguments. The ®rst method, in
which non-iterative triple-excitation amplitudes are used
in the expression for the expectation values, makes the
wave function accurate through the second order of
MBPT. In the second method, which is an extension of
the ®rst, e�ects of triple-excitation amplitudes are
coupled with single- and double-excitation amplitudes.
The correlated density matrix equivalent through the
fourth order to that obtained when CCSDT-la ampli-
tudes are used is employed in the third method. The
suggested methods are tested on dipole moment and
polarizability calculations for several diatomic closed-
shell molecules and are compared to other related
approaches.
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1 Introduction

Since the advent of quantum chemistry there have been
many attempts to describe electric and magnetic prop-
erties of atoms and molecules. Although nowadays we
can perform calculations of higher-order properties, the
question of inexpensive and accurate calculations of
®rst-order properties still remains. There are two
traditional ways to attack this problem. The ®rst is
based on a de®nition of the ®rst-order properties as a
di�erentiation of the total energy of a molecule with
respect to an external ®eld. The second uses the wave
function of the system in expectation value calculations.
Di�erentiation of the energy can be performed either
numerically or analytically. However, in the case of the

numerical di�erentiation (FPT method) we need to
perform at least two very accurate high-level energy
calculations for the ®rst-order property which is often
time consuming. It is usually more convenient to
di�erentiate analytically, but this also places high
demands on computer time and memory. A very general
formulation of analytical energy derivatives within the
couple cluster (CC) theory is presented in [1±3]. Calcu-
lations based on the perturbation theory also belong to
this category. At the correlation level we distinguish a
double-perturbation approach with the perturbation
involving the correlation term and the term correspond-
ing to an external ®eld. This method is equivalent to
calculation of correlation corrections made to the results
of Dalgarno's uncoupled Hartree-Fock perturbation
scheme [4, 5]. Another perturbative approach is based
on the evaluation of correlation e�ects to coupled
perturbed Hartree-Fock (CPHF) theory [4±6].

In the framework of the CC method [7], alternative
approaches to the energy derivative calculations have
been suggested following the philosophy of the linear
response theory pioneered by Monkhorst [8]. These were
expanded upon by Salter et al. [9], Arponen [10] and the
Danish group [11]. The orthogonally spin-adapted linear
response CC theory was recently developed by Kondo,
Paldus et al. [12]. Their approach also allows calculation
of higher-order properties. Closely related to the present
work are the papers published by Pal and his group [13]
and more recently by Ghose [14]. In general, one can
consider the response theory approaches as an alterna-
tive formulation of the CC theory, mostly oriented to-
wards the energy functionals from which CC amplitudes
and/or derivative amplitudes are calculated from the
stationary principle. A series of functionals was intro-
duced and carefully analysed by Kutzelnigg [15] and
Bartlett et al. [16]. A thorough comparison and analysis
of the linear response approaches from the perturbative
viewpoint was recently published by Nooijen and Snij-
ders [17].

In this paper we have focused on calculations of the
®rst-order properties as expectation values of one-elec-
tron operators associated with speci®c properties. In
comparison to both numerical and analytical derivative
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methods, the expectation value approach is presumably
less time-consuming, since it only requires one energy
(and related wave function) calculation followed by the
construction of a density matrix. What we need in this
case is a su�ciently accurate wave function (or density
matrix) describing a molecule in a speci®c state. Ac-
cording to the Hellman-Feynman theorem, the de®ni-
tions of ®rst-order properties as a di�erentiation of the
energy and as the expectation value of the operator of
this property are only equivalent for fully variational
wave functions and exact eigenfunctions of the Hamil-
tonian. Since the former de®nition is physically closer to
experimental techniques, we ®rst try to ®nd an appro-
priate level of calculation for the energy di�erentiation.
Then, in the expectation value calculation we construct a
density matrix from the corresponding wave function,
calculate the expectation value, and analyse the di�er-
ence between both values. If our trial function approx-
imates the eigenfunction of the Hamiltonian accurately
enough the di�erence should be negligible.

Noga and Urban [18] investigated the possibility of
using CC wave function in the expression for the ex-
pectation value of a ®rst-order property. They assessed
the accuracy of wave functions at di�erent levels of the
CC method by comparing their results with those ob-
tained by FPT calculations. They concluded that the
CCSD method leads to qualitatively satisfactory esti-
mations, but there are many cases where the inclusion of
triple excitations is unavoidable. The price to pay in
the case of iterative versions of CCSDT is a higher
computational demand. Therefore, non-iterative ap-
proaches ± CCSD+T(CCSD) and CCSD(T) [19, 20]
that approximate the e�ects of triple excitations have
been suggested. These mostly provide accurate energies,
but the wave function cannot be uniquely de®ned.

This work investigates substituting converged triple-
excitation amplitudes with the non-iterative T3 ampli-
tudes in the expression for the expectation value of a
®rst-order property, as well as addressing some remarks
on the accuracy of the wave function. This can be quite
successfully assessed by its ability to provide reliable
molecular properties.

2 Theory

2.1 CC method

The CC theory has been nicely presented in recent
reviews by Paldus [21] and Bartlett [22]. For the purpose
of our analysis we will brie¯y summarize the basic
principles. A common feature of all CC methods is the
exponential expansion of the wave function

jWi � eTjUi ; �1�
where jUi is a reference state and T is the cluster
operator for N electrons

T � T 1 � T 2 � � � � � T N �
XN

a�1
T a ; �2�
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n o
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The sum runs over the various a-tuple excitations; tab...
ij...

are anti-symmetrized cluster amplitudes and the symbol
fg represents a normal product of creation and annihi-
lation operators. The indices i; j; . . . denote spin orbitals
which are occupied in the reference function and the
indices a; b; . . . correspond to the virtual spin orbitals.

This exponential formulation guarantees the size
extensivity of the CC methods even with a truncated
cluster operator, and inclusion of higher excitations
gives the CC theories on advantage over traditional
approximate CI methods.

Considering the intermediate normalization
�hUjWi � 1� the correlation energy for the standard CC
methods is given as:

DECC � U eÿTHNe
T

�� ��U
 � � 
U HNe
T

ÿ �
C

�� ��U� ; �4�
where HN is a normal-ordered second quantized Ham-
iltonian and index C indicates that only connected terms
are to be taken into account within the diagrammatic
representation. Cluster amplitudes are determined by
solving CC equations:

hUab...
ij... j�HNe

T�CjUi � 0 ; �5�
where hUab...

ij... j is a Hermitian conjugated bra-state to the
excited determinant

jUab...
ij... i � a�ib�j . . . jUi : �6�

A disadvantage of the standard truncated CC methods is
that they are not variational. It means that the T
amplitudes being solutions of CC Eqs. (4) and (5) do not
minimize the expectation value energy functional

DEX � Uh jeT�HNe
T Uj i

Uh jeT� eT Uj i
: �7�

If the cluster operator T is complete, Eqs. (4) and (5) give
the exact result equivalent to a full CI result. In fact we
construct the expectation value functional in Eq. (7) for
the truncated cluster operator T with amplitudes obey-
ing Eq. (5), but then the energy eigenvalue di�ers from
the expectation value of energy. The di�erence is due to
excitations, which are not considered in T and do not
satisfy Eq. (5) and can be expressed as follows [8]:

DEX ÿ DECC �
X

a

0 U eT
�
eT

�� ��Ua

 �

Ua eÿTHNe
T

�� ��U
 �
Uh jeT� eT Uj i

;

�8�
where the sum runs over all excitations for which Eq. (5)
is not satis®ed. If we compare the expectation-value
calculations of properties with energy-derivative calcu-
lations, we have to keep in mind that we di�erentiate the
CC energy from Eq. (4) which, in general, is not the
expectation value for the energy.
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2.2 CC methods with non-iterative triples

According to the truncation of the T operator one
distinguishes the di�erent levels of the CC methods.
Although the CCSD method [23] which corresponds to
T � T1 � T2 has been shown to be an accurate method
for a wide spectrum of correlation problems, there are
many cases where the inclusion of triple excitations
e�ects is necessary. Since the full CCSDT [24] is
extremely computationally demanding, simpler versions
based on a restriction of the exponential expansion of
the wave operator eT have been suggested ®rst [19, 25,
26]. However, even the simplest version of CCSDT, i.e.
CCSDT-1 [25], requires � n3occn

4
virt operations in each

iteration. Therefore, using the philosophy of the MBPT,
non-iterative methods to treat the e�ects of triple
excitations have been introduced. In CCSD+T(CCSD)
[19] the T(CCSD) correction formally corresponds to
fourth-order MBPT energy due to triple excitations:

E
�4�
T � ÿ Uh jT�3 FN T3 Uj i �9a�
ÿ FN T3� �C Uj i � WN T2� � Uj i �9b�
where FN is the normal-ordered Fock operator and
WN � HN ÿ FN : Unlike in MBPT(4), T 2 amplitudes in
Eq. (9b) are not of the ®rst order, but the result from the
solution of CCSD. Since from numerical experience it
follows that T(CCSD) often overestimates the e�ects of
triple excitations, a more established CCSD(T) method
has been suggested [20] which formally includes all the
®fth-order terms covered by CCSDT-1a. In addition to
T(CCSD), the correction includes the ®fth-order term

E
�5�
ST � ÿ Uh j T�1 WN T3

ÿ �
C Uj i �9c�

where T3 is again de®ned by Eq. (9b). Although in both
methods we deal with a certain set of CC amplitudes, the
®nal energy expression can be considered as a combina-
tion of the two approaches ± CC and MBPT. This is the
reason why the wave function is not precisely de®ned.
What we can do, however, is to use the non-iterative T 3

amplitudes to construct a certain wave function or
density matrix and test their accuracy say by comparing
the expectation value of a ®rst-order property with the
CCSD(T) energy derivative. A small di�erence between
the two is at least a plausible indication of the accuracy
of such a constructed wave function.

2.3 CC calculations of ®rst-order properties

2.3.1 Analytic derivative of energy

It is not the purpose of this paper to give a full
description of analytical gradient methods in the frame
of CC theory, but since there is a close relation between
CCSD(T) formulation of k-equations [1, 27, 28] and the
construction of the non-relaxed CCSD(T) density matrix
in the expectation value approach, we will brie¯y present
a basic outline of the CCSD(T) gradient method.
Derivative of the triple-excitation contribution in the
CCSD(T) method for the case of canonical UHF
orbitals is of the form:
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For exact de®nitions of the one- and two-electron
density matrices D and C see Watts et al. [27]. Quantities
sa

i and sab
ij are de®ned as follows:

sa
i �

1

4

X
bcjk

t�c�abc
ijk bckjkh i ; �11a�
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ÿ
X
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h i!
; �11b�

where the connected and disconnected triple-excitation
amplitudes are given respectively byeDabc

ijk t�c�abc
ijk �

X
e

P�i=jk�P�a=bc�tae
jk bckeih i

�
X

m

P�i=jk�P�a=bc�tbc
mi jkkmah i

�12�

andeDabc
ijk t�d�abc

ijk � P�i=jk�P�a=bc�tai bckjkh i : �13�
The permutation operators are de®ned by

P�p=qr� � 1ÿ �pq� ÿ �pr� ; �14�
where �pq� means permutation of indices p and q. eDabc

ijk is
given byeDabc

ijk � ei � ej � ek ÿ ea ÿ eb ÿ ec ; �15�
where ep are the UHF orbital energies.

As for the amplitude derivatives in Eq. (10), their
evaluation is not necessary. Instead, one has to solve
a set of perturbation independent linear K-equations.
Formally the K-equations for the CCSD method can be
written as

F1 ka
i ; k

ab
ij

� �
� 0 �16�

and

F2 ka
i ; k

ab
ij

� �
� 0 ; �17�

where the terms included in the functions F1 and F2 are
de®ned in [1]. When triple excitations are added, they
become

F1 ka
i ; k

ab
ij

� �
� sa

i �18�
and

F 2 ka
i ; kab

ij

� �
� sab

ij : �19�
As we can see, sa

i and sab
ij represent the ®rst approxima-

tions of the triple-excitation contributions to K-ampli-

77



tudes. Through these quantities a coupling of non-
iterative T 3 amplitudes with those of K1 and K2 is
introduced. Thus, although in the expression for
CCSD(T) energy no coupling of T 3 amplitudes with
those of T 1 and T 2 is introduced by de®nition, the energy
derivative does depend on such coupling.

Having the solutions of Eqs. (18) and (19) we add
CCSD contributions to one- and two-electron density
matrices. Then the expression for the CCSD(T) gradient
has the form:

@E

@v
�
X

a

Da
@ea

@v
�
X

i

Di
@ei

@v
�
X
pqrs

C�pq; rs� @ pqh j rsj i
@v

:

�20�
MO integral and orbital-energy derivatives can be
divided into AO and MO contributions. After eliminat-
ing CPHF coe�cients by the z-vector method [29] we
arrive at a ®nal expression for the energy gradient which,
for zero AO derivatives, has the following form:

@E

@v
�
X

pq

Dpqh
v
pq ; �21�

where Dpq is the total relaxed density matrix given as the
sum of amplitude and orbital-response contributions,
and hv

pq is the Hamiltonian derivative matrix element in
the MO basis.

2.3.2 Expectation value calculations

The general ideas presented in this section originate from
the pioneering work of CÏ õÂ zÏ ek [30] and Monkhorst [8].
Let us have a system, which is exposed to an external
®eld. For such a system the Hamiltonian can be written
in the form:

Ĥ�v� � Ĥ�0� � vÔ : �22�
We can express the energy of this system as an ex-

pectation value for the externally perturbed wave func-
tion W�v�:

E�v� � W�v�h jH�v� W�v�j i
W�v�h jW�v�i : �23�

Property corresponding to the operator Ô can be
obtained by di�erentiating Eq. (23) at v � 0:

dE
dv

����
v�0
� W�0�h jÔ W�0�j i

W�0�h jW�0�i

� 2

S
W�0�h j H�0� ÿ E�0�� � dW�v�

dv

���� �����
v�0

; �24�

where (0) refers to the unperturbed system and S is the
overlap:

S � W�0�h jW�0�i : �25�
The ®rst term in Eq. (24) represents the expectation
value of the operator Ô. The second term, the so-called
non-Hellmann-Feynman term (non-HF term), does not
in general vanish for approximate non-variational wave
functions. However, it can be negligible for highly

accurate wave functions. Noga and Urban [18] have
shown that for the CC wave functions with the truncated
cluster operator T the non-HF term can be expressed as
follows:

W�0�h j H�0� ÿ E�0�� � dW�v�
dv

���� �����
v�0

�
X

a

0
ca U�0�a

 ��eÿTHeT U�0�j i ; �26�

where the sum runs over all excitations which are not
included in T.

Let us now turn back to the expression for the
expectation value of the operator Ô. For CC wave
functions even with truncated T it can be expressed in
terms of connected contributions only [30]:

Ô
� � Uh jeT�ÔeT Uj i

Uh jeT�eT Uj i � Uh jeT�ÔeT Uj iC : �27�

Equation (27) only holds for the complete (i.e. in®nite)
expansion. Nevertheless, we can choose a truncation
that leads to errors which are of a higher order in the
MBPT expansion than those introduced by the approx-
imation of the wave function itself.

We can summarize the reasons why


Ô
�
deviates

from the energy eigenvalue di�erentiation for CC wave
functions with a truncated T-operator as follows:

1. The CC energy eigenvalue is not equal to the energy
expectation value.

2. The non-HF term is non-zero.
3. Truncation of the in®nite expansion in Eq. (27) is

necessary.

To put the truncation of Eq. (27) on a reasonable
base, Noga and Urban [18] suggested employing MBPT
logic and decided to retain all second-order terms of the
wave function (i.e. terms which are exact through
the second order in MBPT expansion) on both sides of
the operator Ô. We shall denote this approach as WF(2).
For the CCSDT method and its approximations they
obtained the following expression:

Ô
�
WF�2� � Uh j 1� T�2 � 1

2T
�
2 T�2 � T�1 � T�3

ÿ �
� Ô 1� T2 � 1

2T2T2 � T1 � T3
ÿ �

Uj iC : �28�
In the context of the stationary CC response ap-

proach Pal and his group [13] and Ghose [14] used
slightly di�erent criterion for the truncation of the
expectation value expression. They distinguish linear,
quadratic and cubic truncation of the exponential
expansion of the CC wave function.

With the aim to improve the accuracy of the corre-
lated density matrix coming from Eq. (28), Urban et al.
[31] later suggested adding another term:

Uh jT�2 ÔT1T2 Uj iC �Hermitian conjugated term : �29�
The resulting density matrix is exact through the

fourth order of the MBPT only if the amplitudes come
from full CCSDT (or at least from CCSDT-4 [19]).
Using lower versions of CCSDT, the density matrix
constructed according to Eqs. (28) and (29) does not
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necessarily contain all the fourth-order MBPT density
matrix terms. Thus, when assessing the accuracy of the
density matrix, the accuracy of the amplitudes has to be
taken into account. A comparison with MBPT calcu-
lations of electric properties as proposed by Caves and
Karplus [6] is topical. Accuracy of the amplitudes is
particularly important if non-iterative methods are
used.

2.3.3 Expectation value calculations
with non-iterative triples

Non-iterative triple-excitation amplitudes in CCSD(T)
Eq. (9b) are equivalent through the second order of the
MBPT to those obtained iteratively by any of the
CCSDT-n variants lower than CCSDT-4. Seemingly,
both WF(2)-CCSD(T) and WF(2)-CCSDT-n should
provide qualitatively comparable results, while the
former is computationally much cheaper. Unfortunate-
ly, as will be seen in Sect. 3, the WF(2)-CCSD(T)
method often leads to only slight improvement of CCSD
results and completely fails to describe the dependence
of the dipole moment on interatomic distance, for
example for the CO molecule.

The reason for this can be found by a more detailed
analysis of the correlated density matrix constructed
from the iterative and non-iterative CC wave functions.
Let us consider the CCSDT-1 wave function. Such a
function is ``only'' exact through the second order of
MBPT, the resulting density matrix contains most of the
third- and fourth-order terms, which are important but
which are not included within the non-iterative ap-
proach. Unfortunately, to calculate a density matrix
exactly through the fourth order requires N 8 processes
(vide infra), which for realistic systems would be un-
bearable. Nevertheless, even if the CCSDT-1a density
matrix is not exact through the fourth order, the ex-
pectation values are in a very good agreement with the
corresponding energy derivatives. We deduce that
the strength of the approximate iterative versions of the
CCSDT method lies in the fact that they o�er ``bal-
anced'' wave functions. Consequently, we do not strictly
follow particular orders of the wave function and/or
density matrix, but rather take the MBPT order criterion
as a starting-point followed by an attempt to ®nd a
balanced correlated density matrix.

The absence of the coupling of T3 amplitudes with
those of T1 and T2 is the most important di�erence be-
tween non-iterative and iterative approaches. One ar-
gument for inclusion of such coupling in constructing
the correlated density matrix comes from the analysis of
the CCSD(T) analytic gradient approach. The CCSD(T)
energy does not directly depend on such coupling, in the
case of gradient calculation the coupling of T3 with K1

and K2 amplitudes is introduced. Taking the interaction
of T3 amplitudes with those of T1 and T2 into account
plays an important role in obtaining more accurate ap-
proximation of the expression for the expectation value.
Thus, to improve the WF(2)-CCSD(T) density matrix
we decided to add all the third- and fourth-order terms,
in which the coupling of the non-iterative T3 amplitudes
with T1 as well as T2 amplitudes occurs



Ô
�CCSD�T�
WF�3� � 
Ô�CCSD�T�

WF�2� � UjT�2 ÔT �3�2 jU
D E

C

� UjÔT �3�1 jU
D E

C
� UjT�2 ÔT �3�1 jU
D E

C

� UjT�2 T�1 ÔT2jU
D E

C

�Hermitian conjugate , �30�
where



Ô
�CCSD�T�
WF�2� corresponds to Eq. (28) if non-

iterative T3 amplitudes are used. T1 and T2 are converged
CCSD amplitudes and T �3�1 and T �3�2 are de®ned as follows

ÿ�FN T �3�1 �C Uj i � �WN T3�C Uj i ; �31a�

ÿ�FN T �3�2 �C Uj i � �WN T3�C Uj i : �31b�
The diagrammatic representation of the terms in Eq.
(30) is shown in Fig. 1.

Our T1 and T2 amplitudes are now accurate through
the third order. Correspondingly, we denote this ex-
tended CCSD(T) expectation value approach as WF(3)-
CCSD(T). To get the wave function exactly through the
third order we would have to project the term
�HN T3�C
�� ��U� onto T3 subspace which would mean per-

Fig. 1. a Schematic de®nition of the non-iterative T T�CCSD�
3

amplitudes. b De®nition of the third-order contributions to the T1
and T2 amplitudes denoted as T �3�1 and T �3�2 , respectively. c
Diagrammatic representation of the third- and fourth-order
correlation contributions to the WF(3)-CCSD(T) density matrix,
which are added to the WF(2)-CCSD(T) density matrix terms
coming directly from Eq. (28). The last diagram is the represen-
tation of Eq. (29). Diagrams of the Hermitian conjugates are not
presented. D represents the denominator corresponding to the
amplitude

79



forming N 8 operations. Such a projection, however, ®rst
appears in the CCSDT-4. Moreover, the analysis of the
diagrammatic representation of the CCSD(T) analytical
gradient method does not refer to such a contribution
from T3 amplitudes. These are the reasons why we do not
consider this step essential in constructing the CCSD(T)
correlated density matrix.

If we compare the de®nitions of T �3�1 and T �3�2 ampli-
tudes (Fig. 1) with quantities sai and s

ab
ij and (Eq. 11), we

realize that the former represent that part of the latter,
which comes from the connected T3 amplitudes (Eq. 12).
The second part, having its origin in the disconnected T3
amplitudes, is already included in the converged CCSD
T2 amplitudes.

Within the non-iterative approaches we have also
tried to use a density matrix equivalent through the
fourth order to that obtained from CCSDT-1a. This
requires addition of two more terms (which are easy to
calculate) to the WF(3)-CCSD(T) density matrix (see
Fig. 2):

Ô
�CCSD�T�
DM�4� �



Ô
�CCSD�T�
WF�3� � Uh jÔT �4a�

1 Uj iC
� Uh jÔT �4b�

1 Uj iC �Hermitian conjugate ;

�32�
where T �4a�

1 and T �4b�
1 are de®ned as follows

ÿ�FN T �4a�
1 �C Uj i � �WN T �3�2 �C Uj i ; �33a�

ÿ�FN T �4b�
1 �C Uj i � �WN T �3�1 �C Uj i : �33b�

This method is denoted as DM(4)-CCSD(T). Most likely
due to the non-balanced accuracy of T1 and T2 ampli-
tudes, the DM(4)-CCSD(T) method does not always
give accurate results (see Sect. 3).

The main goal of developing CC expectation value
calculations is to obtain a method less expensive than
analytical or numerical derivative approaches, but still
providing highly accurate results. Let us then summarize
the computational demands of these methods. The most
time-consuming step is calculation of the non-iterative
T3 amplitudes and the term



U
��T�3 ÔT3

��U�C in all sug-
gested methods. Both steps require N 7 operations.
Moreover, WF(3)-CCSD(T) and DM(4)-CCSD(T) ap-
proaches require computation of T �3�2 amplitudes which
is also a N 7 process. Thus, in comparison to the
CCSD(T) analytic gradient approach the latter methods
contain the same number of N 7 operations, but solving
of modi®ed CCSD K-equations iteratively is not neces-
sary.

3 Numerical results and discussion

We have performed WF(2)-CCSD(T), WF(3)-CCSD(T),
and DM(4)-CCSD(T) calculations of dipole moments
and also calculations of dipole polarizabilities computed
as ®rst derivatives of the induced dipole moments. As
our test examples we selected several diatomic closed-
shell molecules and compared our results with those
obtained by CCSD and CCSDT-1a expectation value
methods and with numerical derivatives of CCSD,
CCSD+T(CCSD), CCSD(T) and CCSDT-1a energies.
It should be mentioned that the CCSD(T) method often
gives better results than CCSDT-1a [32]. Wherever
available, we compare the results with experimental
values even if the di�erence between experimental and
theoretical values is most likely a�ected by using
restricted basis sets. All calculations were performed
for equilibrium geometries.

In Table 1 we present the results of SCF- and CC-
energy calculations for all the molecules investigated.

3.1 Dipole moment and polarizability of HF molecule

Tables 2 and 3 show the results of dipole-moment
calculations in which Sadlej's [33] polarized basis set
�5s3p2d=3s2p� was used. It is seen that practically all
computed values lie within the range of experimental

Fig. 2. a De®nition of the fourth-order contributions to the T1
amplitudes denoted as T �4a�

1 and T �4b�
1 . b Diagrammatic represen-

tation of the fourth-order correlation contributions to the DM(4)-
CCSD(T) density matrix. These have to be added to the WF(3)-
CCSD(T) density matrix terms so as to obtain a density matrix
equivalent, through the fourth order, to that of the CCSDT-1a
method. Diagrams of the Hermitian conjugates are not presented

Table 1. SCF and CC energies. All calculations were performed at equilibrium geometries: HF molecule, r � 1:733 �5s3p2d=3s2p� basis set;
CO molecule, r � 2:13161 �6s4p1d�; BeO molecule, r � 2:5149, �5s3p2d�; HCN molecule, r � 2:17885 �5s3p2d=3s2p�. Atomic units are used
and all electrons were correlated

Method HF CO BeO HCN

SCF )100.053 464 )112.776 005 )89.429 153 )92.902 208
CCSD )100.282 674 )113.122 003 )89.703 869 )93.241 138
CCSD+T(CCSD) )100.287 318 )113.137 369 )89.718 657 )93.257 859
CCSD(T) )100.286 571 )113.135 674 )89.714 158 )93.257 031
CCSDT-1a )100.287 165 )113.137 309 )89.718 857 )93.257 813
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data. Hence, we assess the accuracy of our proposed
methods by comparison with CCSD(T) and CCSDT-1
energy derivatives.

First, let us note that there is a relatively large dis-
crepancy between the numerical CCSD energy derivative
and the expectation value for the dipole moment. This
has been observed before [18], and implies that the
CCSD wave function is ``too far'' from being exact. Let
us stress that the CCSD wave function is only correct
through the ®rst order in the sense of MBPT. Inclusion
of iterative triple excitations at the CCSDT-1a level
leads to signi®cant improvement of the results for both
derivative- and expectation-value approaches. The dif-
ference between them is negligible.

Despite the fact that the WF(2)-CCSD(T) approach
gives better results than the CCSD method, the im-
provement does not correspond to what we would have
expected from the wave function through the second
order. Much better results, practically comparable with

CCSD(T) and CCSDT-1 numerical derivatives, can be
obtained by the WF(3)-CCSD(T) approach. The
DM(4)-CCSD(T) method also provides quite accurate
results.

Table 3 also contains polarizabilities computed as the
®rst derivatives of the induced dipole moment expecta-
tion values and the second derivatives of the total energy
of a molecule with respect to the external ®eld. This
property is not so sensitive to the method chosen and all
the correlated methods give similar results.

3.2 Dipole moment and polarizability
of the CO molecule

It is well known that for the dipole moment of the CO
molecule a correct description of the electron correlation
is essential. Particularly, the proper description of its
dipole-moment curve appears to be a very hard test of
the accuracy of a method [34].

The �6s4p2d� basis set for CO was constructed from
the �5s3p� set augmented by carbon and oxygen d-func-
tions with exponents ad�C� � 0:7 and ad�O� � 1:2 and
di�use functions as;p�C� � 0:0438 and as;p�O� � 0:0845
[35].

Compared to HF, the dipole moment calculations of
the CO molecule are much more sensitive to the inclu-
sion of triple excitations. Although the CCSD method
gives the correct sign of the dipole moment (in contrast
to SCF), its value is still far from the experimental one as
well as from the values obtained when the T3 operator is
taken into account. Again, as for HF, the di�erence
between the CCSD energy derivative and the dipole
moment expectation value is very large. Results of
CCSD+T(CCSD), CCSD(T) and CCSDT-1a energy
derivatives seem to be stable, and the WF(2)-CCSD(T)
method only slightly improves the CCSD expectation
value. Addition of other fourth-order terms in the
DM(4)- CCSD(T) method does not lead to the expected
results either. Much better results are obtained by using
the WF(3)-CCSD(T) method.

In Table 4 computed values of polarizabilities are
presented. Again, these do not appear to be very sensi-
tive to a chosen correlation method. Even the CCSD

Table 2. Total values and some particular correlation contributions
to the dipole moments calculated as the expectation value using
SCF, CCSD and non-iterative CC density matrices. The geometries
and basis sets as de®ned in Table 1 are used. All values are in a.u.

Method contribution HF CO BeO HCN

SCF 0.757 0.119 2.946 1.294
CCSD 0.688 )0.121 2.290 1.152
WF(2)-CCSD(T) 0.692 )0.097 2.321 1.162


UjT�3 ÔT3
��U�C )0.001 )0.007 )0.028 )0.003

UjT�2 T�2 ÔT3
��UiC�
UjT�2 ÔT3
��UiC � HCa 0.006 0.031 0.060 0.013

WF(3)-CCSD(T) 0.703 )0.052 2.365 1.175

UjT�2 ÔT �3�2

���U�C � HCa )0.003 )0.019 )0.084 )0.010

UjÔT �3�1 jU�C � HCa 0.018 0.082 0.179 0.020

UjT�2 ÔT �3�1

���U�C � HCa )0.003 )0.018 )0.043 )0.004

UjT�2 T�1 ÔT2

��U�C � HCa )0.001 0.000 )0.008 0.007

DM(4)-CCSD(T) 0.696 )0.099 2.226 1.159

UjÔT �4a�

1 jU�C � HCa )0.007 )0.047 )0.153 )0.019

UjÔT �4b�

1 jU�C � HCa 0.000 0.001 0.014 0.003

a Hermitian conjugate

Table 3. HF molecule. Dipole moments and polarizabilities are calculated at r=1.733 and �5s3p2d=3s2p� basis set. All values are in a.u.

Method Dipole momenta


Ô
�

Dipole momentb E�1� Polarizabilityc


Ô
��1�

Polarizabilityd E�2�

SCF 0.757 0.757 5.7 5.7
CCSD 0.688 0.707 6.6 6.3
CCSD+T(CCSD) ± 0.700 ± 6.4
CCSD(T) ± 0.702 ± 6.4
CCSDT-1a 0.701 0.700 6.4 6.4
WF(2)-CCSD(T) 0.692 ± 6.5 ±
WF(3)-CCSD(T) 0.703 ± 6.4 ±
DM(4)-CCSD(T) 0.696 ± 6.5 ±
Experimente ± 0.68, 0.75 ± ±

a The expectation values
b The ®rst energy derivatives
c The ®rst derivatives of the dipole moment expectation value
d The second energy derivatives
e Experimental values are taken from [41, 42]
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method gives accurate results in spite of its relative in-
ability to provide accurate dipole moment. The com-
paratively better accuracy of the CCSD polarizability is
quite understandable, if one realizes that it is only due to
the change in electronic dipole moment, while the total
dipole moment itself is the sum of electronic and nuclear
parts which are both large and almost cancel each other.
Although the contribution of triple excitations to the
electronic dipole moment is relatively small, it becomes
essential for the total dipole moment.

The dipole-moment curves calculated with several
methods are shown in Figs. 3 and 4. In Fig. 3 the WF(2)-
CCSD(T), WF(3)-CCSD(T) and DM(4)-CCSD(T)
methods are compared with the CCSD(T) numerical-
derivative approach. In Fig. 4 we present the non-
iterative WF(3)-CCSD(T) results together with those
obtained by the numerical di�erentiation with various
CC methods. Trends observed already for single-point
calculations at equilibrium geometry are preserved in the
whole investigated interval of internuclear distances.
Nevertheless, the di�erences are more pronounced with
increasing internuclear distance. While WF(3)-CCSD(T)
practically mimics the CCSD(T) and CCSDT-1a energy
derivatives, DM(4)-CCSD(T) totally fails, which con-
®rms that this approach uses an unbalanced density
matrix.

3.3 Dipole moment and polarizability
of the BeO molecule

The X 1R�g state of BeO appears to be a challenge to ab
initio calculations [36] not only because of the unknown
experimental values of the dipole moment and polariza-
bility. Scuseria and Lee's T1 diagnostics [37] has led to
the conclusion that non-dynamical correlation e�ects are
very important and a multireference approach should
be utilized. A comparison of CC calculations [32] with
multireference results [38] has shown that the CCSDT
method provides accurate results and although the
magnitude of the triples corrections varies somewhat
with method including triple excitations, the CCSD(T)
method best approximates CCSDT. The sensitivity of
individual corrections of the higher-level CC methods,
including terms from connected quadruples, was dem-
onstrated in calculations for the valence isoelectronic of
BeS by Noga and Pluta [39].

Data for the BeO molecule computed with Sadlej's
polarized basis set �5s3p2d� are presented in Tables 2 and
5. We can see that the inclusion of triple-excitation ef-
fects is not as transparent as it was in the previous cases.
The lowest iterative version of CCSDT seems to be
somehow unbalanced. It gives results which are far from
the full CCSDT value, and multireference methods [38]
as well. In contrast, the CCSD(T) dipole moment and

Table 4. CO molecule. Dipole moments and polarizabilities are calculated at r=2.13161 and �6s4p1d� basis set. All values are in a.u. For
notations see footnotes to Table 3

Method Dipole moment


Ô
�

Dipole moment E�1� Polarizability


Ô
��1�

Polarizability E�2�

SCF 0.119 0.119 14.5 14.5
CCSD )0.121 )0.034 15.7 15.6
CCSD+T(CCSD) ± )0.060 ± 15.6
CCSD(T) ± )0.056 ± 15.6
CCSDT-1a )0.054 )0.059 15.6 15.6
WF(2)-CCSD(T) )0.097 ± 15.6 ±
WF(3)-CCSD(T) )0.052 ± 15.5 ±
DM(4)-CCSD(T) )0.099 ± 15.7 ±
Experimenta ± )0.048 ± ±

a The experimental value is taken from [43]

Fig. 3. Dipole-moment curves of the CO molecule. Three non-
iterative CC methods suggested for calculation of the dipole
moment as an expectation value are compared with the CCSD(T)
numerical derivative approach. All values are in a.u.

Fig. 4. Dipole-moment curves of the CO molecule. The WF(3)-
CCSD(T) expectation value approach is compared with the CCSD,
CCSD(T) and CCSDT-1a numerical derivatives. All values are in
a.u.
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polarizability values are close to those of the CCSDT
method. As for non-iterative expectation value ap-
proaches, particularly the WF(3)-CCSD(T) method,
they provide relatively accurate estimations of CCSD(T)
numerical derivative results. Although the di�erences are
slightly larger than in the cases of HF and CO molecules,
they are still acceptable. We observed reasonably good
agreement of WF(3)-CCSD(T) and full CCSDT values
of dipole moment.

3.4 Dipole moment and polarizability
of the HCN molecule

In calculations of HCN we used the �5s3p2d=3s2p� ANO
basis set with equilibrium geometry taken from [40]. It
can be seen from Tables 2 and 6 that all values of ®rst as
well as the second-order numerical derivatives of energy
obtained by CC methods including triple excitations are
in very good mutual agreement.

The non-iterative expectation value methods preserve
the trends observed in previous cases. The WF(2)-
CCSD(T) method produced a slight improvement over
CCSD results, while the WF(3)-CCSD(T) approach
gave dipole moment and polarizability values practically
identical to those of CCSD(T) energy derivatives. With
the DM(4)-CCSD(T) method we obtained results similar
to those of WF(2)-CCSD(T).

4 Conclusion

In this study we have investigated the possibility of using
expectation value calculations of ®rst-order properties

using the CC wave function in which non-iterative triple
excitations are involved. The basic idea was to substitute
iteratively obtained T3 amplitudes with non-iterative
ones in the truncated expression for the expectation
value of the operator associated with a certain ®rst-order
property. Since they are equivalent through the second
order of the MBPT expansion, the original criterion for
truncation of the in®nite expansion in Eq. (28) has
remained preserved. We refer to this approach as
WF(2)-CCSD(T). Its extension has been achieved by
adding all third- and fourth-order terms to the correlat-
ed density matrix, which include T1 and T2 amplitudes
obtained by projection of the term �HN T3�C

�� ��U� onto the
subspaces of mono- and bi-excitations. Since the accu-
racy of T1 and T2 was improved through the third order
of the MBPT expansion, we denote this approach as
WF(3)-CCSD(T). Inclusion of some other fourth-order
terms has led to the density matrix equivalent through
the fourth-order of the MBPT expansion to that
obtained if CCSDT-1 amplitudes were used in Eq.
(28). We denote this approach as DM(4)-CCSD(T).

Suggested methods were tested by calculations of
dipole-moment values and polarizabilities as the deriv-
atives of induced dipole-moment values for several di-
atomic closed-shell molecules. Moreover, for the CO
molecule we have calculated the dipole-moment curve.
Our results were compared with those of numerical
di�erentiation of energy for di�erent versions of the
standard CC theory and with experimental values where
available.

While the WF(2)-CCSD(T) approach has usually led
to only a slight improvement of CCSD results, the
WF(3)-CCSD(T) method was able to reproduce the ac-

Table 5. BeO molecule. Dipole moments and polarizabilities are calculated at r=2.5149 and �5s3p2d� basis set. All values are in a.u.

Method Dipole moment


Ô
�

Dipole moment E�1� Polarizability


Ô
��1�

Polarizability E�2�

SCF 2.946 2.946 19.7 19.7
CCSD 2.290 2.558 39.1 28.8
CCSD+T(CCSD) ± 2.256 ± 46.2
CCSD(T) ± 2.432 ± 34.5
CCSDT-1a 2.226 2.256 53.8 48.5
CCSDTa ± 2.40 ± 36.0
WF(2)-CCSD(T) 2.321 ± 38.6 ±
WF(3)-CCSD(T) 2.365 ± 39.6 ±
DM(4)-CCSD(T) 2.226 ± 44.6 ±

a CCSDT values are taken from [32]

Table 6. HCN molecule. Dipole moments and polarizabilities are calculated at r(CH)=2.0126, r(CN)=2.1789 and �5s3p2d=3s2p� ANO
basis set. All values are in a.u.

Method Dipole moment


Ô
�

Dipole moment E�1� Polarizability


Ô
��1�

Polarizability E�2�

SCF 1.294 1.294 22.5 22.5
CCSD 1.152 1.190 21.8 22.2
CCSD+T(CCSD) ± 1.175 ± 22.6
CCSD(T) ± 1.174 ± 22.5
CCSDT-1a 1.169 1.175 22.6 22.6
WF(2)-CCSD(T) 1.162 ± 22.0 ±
WF(3)-CCSD(T) 1.175 ± 22.4 ±
DM(4)-CCSD(T) 1.159 ± 22.3 ±
Experimenta 1.163�0.010

a Experimental value is taken from [40]
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curacy of the CCSD(T) energy derivative results in all
cases investigated. Inclusion of additional terms in the
DM(4)-CCSD(T) approach has often caused destabi-
lization of the density matrix and the method provided
worse results than WF(3)-CCSD(T). As to computa-
tional demands, in comparison with the analytical
CCSD(T) energy derivative calculation, the WF(3)-
CCSD(T) approach requires the same number of N 7

operations, but the iterative procedure of solving mod-
i®ed CCSD K-equations is in our case omitted.

Although theoretical derivation of the WF(3)-
CCSD(T) method involves several approximations, this
method provides results comparable in accuracy to those
of the CCSD(T) energy derivative approach, and it is
cheaper.
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